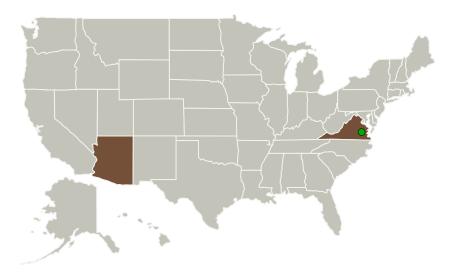
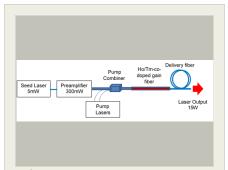
Polarization Maintaining Ho-Doped Fiber Amplifier, Phase I



Completed Technology Project (2016 - 2016)


Project Introduction

The laser absorption spectrometer approach offers the potential to provide the high-accuracy carbon dioxide mixing ratio measurements with the vertical and horizontal spatial resolution that is desired by the carbon cycle research community. It is generally agreed that 2.05 micron wavelength absorption band of carbon dioxide can offer good differential absorption optical depth. An amplifier with output power of 15W is needed to burst the output power for airborne and space applications. We propose to develop a high average power polarization maintaining single frequency Ho-doped 2.05 micron wavelength fiber amplifier with output power of 15W by developing innovative radiation hardened Ho/Tm-co-doped silicate glass fiber. In Phase I we will demonstrate radiation hardened Ho/Tm co-doped silicate glass fibers, and PM fiber amplifier with greater than 10W output power.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
AdValue Photonics, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Tucson, Arizona
• Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Polarization Maintaining Ho-Doped Fiber Amplifier, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	3

Polarization Maintaining Ho-Doped Fiber Amplifier, Phase I

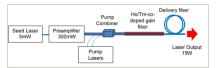
Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations		
Arizona	Virginia	

Project Transitions

0

June 2016: Project Start



December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139723)

Images

Briefing Chart Image

Polarization Maintaining Ho-Doped Fiber Amplifier, Phase I (https://techport.nasa.gov/imag e/136446)

Final Summary Chart Image

Polarization Maintaining Ho-Doped Fiber Amplifier, Phase I Project Image (https://techport.nasa.gov/imag e/128532)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

AdValue Photonics, Inc.

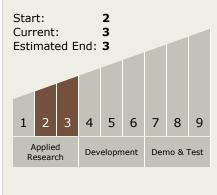
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Shibin S Jiang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Polarization Maintaining Ho-Doped Fiber Amplifier, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

